N-methyl-D-aspartate receptor-dependent regulation of the glutamate transporter excitatory amino acid carrier 1.
نویسندگان
چکیده
The neuronal transporter excitatory amino acid carrier 1 (EAAC1) is enriched in perisynaptic regions, where it may regulate synaptic spillover of glutamate. In this study we examined potential interactions between EAAC1 and ionotropic glutamate receptors. N-Methyl-D-aspartate (NMDA) receptor subunits NR1, NR2A, and NR2B, but not the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluR2, were co-immunoprecipitated with EAAC1 from neuron-enriched hippocampal cultures. A similar interaction was observed in C6 glioma and human embryonic kidney cells after co-transfection with Myc epitope-tagged EAAC1 and NMDA receptor subunits. Co-transfection of C6 glioma with the combination of NR1 and NR2 subunits dramatically increased (approximately 3-fold) the amount of Myc-EAAC1 that can be labeled with a membrane-impermeable biotinylating reagent. In hippocampal cultures, brief (5 min), robust (100 microM NMDA, 10 microM glycine) activation of the NMDA receptor decreased biotinylated EAAC1 to approximately 50% of control levels. This effect was inhibited by an NMDA receptor antagonist, intracellular or extracellular calcium chelators, or hypertonic sucrose. Glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid with cyclothiazide, and thapsigargin mimicked the effects of NMDA. These studies suggest that NMDA receptors interact with EAAC1, facilitate cell surface expression of EAAC1 under basal conditions, and control internalization of EAAC1 upon activation. This NMDA receptor-dependent regulation of EAAC1 provides a novel mechanism that may shape excitatory signaling during synaptic plasticity and/or excitotoxicity.
منابع مشابه
Expression of multiple glutamate transporter splice variants in the rodent testis.
Glutamate is a regulated molecule in the mammalian testis. Extracellular regulation of glutamate in the body is determined largely by the expression of plasmalemmal glutamate transporters. We have examined by PCR, western blotting and immunocytochemistry the expression of a panel of sodium-dependent plasmalemmal glutamate transporters in the rat testis. Proteins examined included: glutamate asp...
متن کاملPossible Contribution of Microglial Glutamate Receptors to Inflammatory Response upon Neurodegenerative Diseases
Abbreviations: AMPA: α-amino-hydroxy-5-methyl-isoxazole4-propionate; ATP: Adenosine Triphosphate; BDNF: Brain-Derived Neurotrophic Factor; CNS: Central Nervous System; EAAT: Excitatory Amino-Acid Transporter; FGF: Fibroblast Growth Factor; GDNF: Glial-Derived Neurotrophic Factor; GLAST: Glutamate Aspartate Transporter; GLT-1: Glutamate Transporter-1; NO: Nitric Oxide; IL3: Interleukin-3; IL-6: ...
متن کاملSynthesis and characterization of 4-methoxy-7-nitroindolinyl-D-aspartate, a caged compound for selective activation of glutamate transporters and N-methyl-D-aspartate receptors in brain tissue.
The D-isomer of aspartate is efficiently transported by high-affinity Na(+)/K(+)-dependent glutamate transporters and is an effective ligand of N-methyl-d-aspartate (NMDA) receptors. To facilitate analysis of the regulation of these proteins in their native membranes, we synthesized a photolabile analogue of D-aspartate, 4-methoxy-7-nitroindolinyl-D-aspartate (MNI-D-aspartate). This compound wa...
متن کاملExcitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance.
Although a glutamate-gated chloride conductance with the properties of a sodium-dependent glutamate transporter has been described in vertebrate retinal photoreceptors and bipolar cells, the molecular species underlying this conductance has not yet been identified. We now report the cloning and functional characterization of a human excitatory amino acid transporter, EAAT5, expressed primarily ...
متن کاملMetabotropic glutamate receptors modulate N-methyl-D-aspartate receptor function in neostriatal neurons.
The functional roles played by metabotropic glutamate receptors in the neostriatum is just beginning to be examined. One possibility, raised by previous studies, is that metabotropic glutamate receptors act to modulate responses mediated by ionotropic glutamate receptors. In the present study, we examined this possibility in a neostriatal brain slice preparation using intracellular recording an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 24 شماره
صفحات -
تاریخ انتشار 2007